Search results

1 – 10 of 16
Article
Publication date: 4 April 2022

Yuxia Ji, Li Chen, Jun Zhang, Dexin Zhang and Xiaowei Shao

The purpose of this paper is to investigate the pose control of rigid spacecraft subject to dead-zone input, unknown external disturbance and parametric uncertainty in space…

232

Abstract

Purpose

The purpose of this paper is to investigate the pose control of rigid spacecraft subject to dead-zone input, unknown external disturbance and parametric uncertainty in space maneuvering mission.

Design/methodology/approach

First, a 6-Degree of Freedom (DOF) dynamic model of rigid spacecraft with dead-zone input, unknown external disturbances and parametric uncertainty is derived. Second, a super-twisting-like fixed-time disturbance observer (FTDO) with strong robustness is developed to estimate the lumped disturbances in fixed time. Based on the proposed observer, a non-singular fixed-time terminal sliding-mode (NFTSM) controller with superior performance is proposed.

Findings

Different from the existing sliding-mode controllers, the proposed control scheme can directly avoid the singularity in the controller design and speed up the convergence rate with improved control accuracy. Moreover, no prior knowledge of lumped disturbances’ upper bound and its first derivatives is required. The fixed-time stability of the entire closed-loop system is rigorously proved in the Lyapunov framework. Finally, the effectiveness and superiority of the proposed control scheme are proved by comparison with existing approaches.

Research limitations/implications

The proposed NFTSM controller can merely be applied to a specific type of spacecrafts, as the relevant system states should be measurable.

Practical implications

A NFTSM controller based on a super-twisting-like FTDO can efficiently deal with dead-zone input, unknown external disturbance and parametric uncertainty for spacecraft pose control.

Originality/value

This investigation uses NFTSM control and super-twisting-like FTDO to achieve spacecraft pose control subject to dead-zone input, unknown external disturbance and parametric uncertainty.

Details

Aircraft Engineering and Aerospace Technology, vol. 94 no. 8
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Xiaowei Shao, Mingxuan Song, Jihe Wang, Dexin Zhang and Junli Chen

The purpose of this paper is to present a method to achieve small satellite formation keeping operations by using the differential lift and drag to control the drift caused by J2…

Abstract

Purpose

The purpose of this paper is to present a method to achieve small satellite formation keeping operations by using the differential lift and drag to control the drift caused by J2 perturbation in circular or near-circular low earth orbits (LEOs).

Design/methodology/approach

Each spacecraft is equipped with five large flat plates, which can be controlled to generate differential accelerations. The aerodynamic lift and drag acting on a flat plate is calculated by the kinetic theory. To maintain the formation within tracking error bounds in the presence of J2 perturbation, a nonlinear Lyapunov-based feedback control law is designed.

Findings

Simulation results demonstrate that the proposed method is efficient for the satellite formation keeping and better accuracy advantage in comparison with classical approaches via the fixed maximum differential aerodynamic acceleration.

Research limitations/implications

Because the aerodynamic force will reduce drastically as the orbital altitude increases, the formation keeping control strategy for small satellites presented in this paper should be limited to the scenarios when satellites are in LEO.

Practical implications

The formation keeping control method in this paper can be applied to solve satellite formation keeping problem for small satellites in LEO.

Originality/value

This paper proposes a Lyapunov control strategy for satellite formation keeping considering both lift and drag forces, and simulation results show better performance with high accuracy under J2 perturbation.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 October 2018

Jihe Wang, Dexin Zhang, GuoZhong Chen and Xiaowei Shao

The purpose of this paper is to propose a new fuel-balanced formation keeping reference trajectories planning method based on selecting the virtual reference center(VRC) in a…

Abstract

Purpose

The purpose of this paper is to propose a new fuel-balanced formation keeping reference trajectories planning method based on selecting the virtual reference center(VRC) in a fuel-balanced sense in terms of relative eccentricity and inclination vectors (E/I vectors).

Design/methodology/approach

By using the geometrical intuitive relative E/I vectors theory, the fuel-balanced VRC selection problem is reformulated as the geometrical problem to find the optimal point to equalize the distances between the VRC and the points determined by the relative E/I vectors of satellites in relative E/I vectors plane, which is solved by nonlinear programming method.

Findings

Numerical simulations demonstrate that the new proposed fuel-balanced formation keeping strategy is valid, and the new method achieves better fuel-balanced performance than the traditional method, which keeps formation with respect to geometrical formation center.

Research limitations/implications

The new fuel-balanced formation keeping reference trajectories planning method is valid for formation flying mission whose member satellite is in circular or near circular orbit in J2 perturbed orbit environment.

Practical implications

The new fuel-balanced formation keeping reference trajectories planning method can be used to solve formation flying keeping problem, which involves multiple satellites in the formation.

Originality/value

The fuel-balanced reference trajectories planning problem is reformulated as a geometrical problem, which can provide insightful way to understand the dynamic nature of the fuel-balanced reference trajectories planning issue.

Details

Aircraft Engineering and Aerospace Technology, vol. 90 no. 6
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 10 August 2021

Wan Liu, Zeyu Li, Li Chen, Dexin Zhang and Xiaowei Shao

This paper aims to innovatively propose to improve the efficiency of satellite observation and avoid the waste of satellite resources, a genetic algorithm with entropy operator…

Abstract

Purpose

This paper aims to innovatively propose to improve the efficiency of satellite observation and avoid the waste of satellite resources, a genetic algorithm with entropy operator (GAE) of synthetic aperture radar (SAR) satellites’ task planning algorithm.

Design/methodology/approach

The GAE abbreviated as GAE introduces the entropy value of each orbit task into the fitness calculation of the genetic algorithm, which makes the orbit with higher entropy value more likely to be selected and participate in the remaining process of the genetic algorithm.

Findings

The simulation result shows that in a condition of the same calculate ability, 85% of the orbital revisit time is unchanged or decreased and 30% is significantly reduced by using the GAE compared with traditional task planning genetic algorithm, which indicates that the GAE can improve the efficiency of satellites’ task planning.

Originality/value

The GAE is an optimization of the traditional genetic algorithm. It combines entropy in thermodynamics with task planning problems. The algorithm considers the whole lifecycle of task planning and gets the desired results. It can greatly improve the efficiency of task planning in observation satellites and shorten the entire task execution time. Then, using the GAE to complete SAR satellites’ task planning is of great significance in reducing satellite operating costs and emergency rescue, which brings certain economic and social benefits.

Details

Aircraft Engineering and Aerospace Technology, vol. 93 no. 7
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 3 January 2017

Xiaowei Shao, Jihe Wang, Dexin Zhang and Junli Chen

The purpose of this paper is to propose a modified fuel-balanced formation keeping strategy based on actively rotating satellites in the formation in the J2 perturbed environment.

Abstract

Purpose

The purpose of this paper is to propose a modified fuel-balanced formation keeping strategy based on actively rotating satellites in the formation in the J2 perturbed environment.

Design/methodology/approach

Based on the relative orbital elements theory, the J2 perturbed relative motions between different satellites in the formation are analyzed, and then, the method to estimate fuel required to keep the in-plane and out-of-plane relative motions is presented, based on which a modified fuel-balanced formation keeping strategy is derived by considering both in-plane and out-of-plane J2 perturbations.

Findings

Numerical simulations demonstrate that the modified fuel-balanced formation keeping strategy is valid, and the modified fuel-balanced formation keeping strategy requires less total fuel consumption than original Vadali and Alfriend’s method.

Research limitations/implications

The modified fuel-balanced formation keeping strategy is valid for formation flying mission whose member satellite is in circular or near-circular orbit.

Practical implications

The modified fuel-balanced formation keeping strategy can be used to solve formation flying keeping problem, which involves multiple satellites in the formation.

Originality/value

The modified fuel-balanced formation keeping strategy is proposed by considering both in-plane and out-of-plane J2 perturbations, which further reduce the fuel consumption than the original Vadali and Alfriend’s method.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 1
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 2 May 2017

Wenjing Zhu, Dexin Zhang, Jihe Wang and Xiaowei Shao

The purpose of this paper is to present a novel high-precision relative navigation method for tight formation-keeping based on thrust on-line identification.

Abstract

Purpose

The purpose of this paper is to present a novel high-precision relative navigation method for tight formation-keeping based on thrust on-line identification.

Design/methodology/approach

Considering that thrust acceleration cannot be measured directly, an on-line identification method of thrust acceleration is explored via the estimated acceleration of major space perturbation and the inter-satellite relative states obtained from space-borne acceleration sensors; then, an effective identification model is designed to reconstruct thrust acceleration. Based on the identified thrust acceleration, relative orbit dynamics for tight formation-keeping is established. Further, using global positioning system (GPS) measurement information, a modified extended Kalman filter (EKF) is suggested to obtain the inter-satellite relative position and relative velocity.

Findings

Compared with the normal EKF and the adaptive robust EKF, the proposed modified EKF has better estimation accuracy in radial and along-track directions because of accurate compensation of thrust acceleration. Meanwhile, high-precision relative navigation results depend on high-precision acceleration sensors. Finally, simulation studies on a chief-deputy formation flying control system are performed to verify the effectiveness and superiority of the proposed relative navigation algorithm.

Social implications

This paper provides a reference in solving the problem of high-precision relative navigation in tight formation-keeping application.

Originality/value

This paper proposes a novel on-line identification method for thrust acceleration and shows that thrust identification-based modified EKF is more efficient in relative navigation for tight formation-keeping.

Details

Aircraft Engineering and Aerospace Technology, vol. 89 no. 3
Type: Research Article
ISSN: 1748-8842

Keywords

Article
Publication date: 7 September 2015

Xiaowei Shao, Mingxuan Song, Dexin Zhang and Ran Sun

The purpose of this paper is to present a method to conduct small satellite rendezvous mission by using the differential aerodynamic forces under J2 perturbation in low earth…

Abstract

Purpose

The purpose of this paper is to present a method to conduct small satellite rendezvous mission by using the differential aerodynamic forces under J2 perturbation in low earth orbit (LEO).

Design/methodology/approach

Each spacecraft is assumed to be equipped with two large flat plates, which can be controlled for generating differential accelerations in all three directions. Based on the kinetic theory, the aerodynamic lift and drag generated by a flat plate are calculated. To describe the relative dynamics under J2 perturbation, a modified model is derived from the high-fidelity linearized J2 equations proposed by Schweighart and Sedwick.

Findings

Simulation results demonstrate that the proposed method is valid and efficient to solve satellite rendezvous problem, and the modified model considering J2 effect shows better accuracy than the Horsley’s Clohessy–Wiltshire-based model.

Research limitations/implications

Because aerodynamic force will reduce drastically as orbital altitude rises, the rendezvous control strategy for small satellites presented in this paper should be limited to the scenarios when satellites are in LEO.

Practical implications

The rendezvous control method in this paper can be applied to solve satellite rendezvous maneuver problem for small satellites in LEO.

Originality/value

This paper proposes a modified differential aerodynamic control model by considering J2 perturbation, and simulation results show that it can achieve higher rendezvous control accuracy.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 5
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 6 November 2017

Yanli Zhang, Hang Zhou, Dianhai Zhang, Ziyan Ren and Dexin Xie

This paper aims to investigate the magnetostrictive phenomenon in a single electrical steel sheet, which may cause vibration and noise in the cores of transformers and induction…

Abstract

Purpose

This paper aims to investigate the magnetostrictive phenomenon in a single electrical steel sheet, which may cause vibration and noise in the cores of transformers and induction motors. A measurement system of magnetostriction is created and the principal strain of magnetostriction is modeled. Furthermore, the magnetostriction property along arbitrary alternating magnetization directions is modeled.

Design/methodology/approach

A measurement system with a triaxial strain gauge is developed to obtain the magnetostrictive waveform, and the principal strain is computed in terms of the in-plane strain formula. A three-layer feed-forward neural network model is proposed to model the measured magnetostriction property of the electrical steel sheet.

Findings

The principal strain of magnetostriction of the non-oriented electrical steel has strong anisotropy. The proposed estimation model can be effectively used to model the anisotropic magnetostriction with an acceptable prediction time.

Originality/value

This paper develops the neural network combined with fast Fourier transform (FFT) to model the principal strain property of magnetostriction under alternating magnetizations, and its validation has been verified.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 36 no. 6
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 28 September 2022

Xvdong Ren, Xiuke Yan, Chen Xu, YanLi Zhang and Dexin Xie

The purpose of this study is to develop a reliable finite element algorithm based on the transmission line method (TLM) to solve the nonlinear problem in electromagnetic field…

Abstract

Purpose

The purpose of this study is to develop a reliable finite element algorithm based on the transmission line method (TLM) to solve the nonlinear problem in electromagnetic field calculation.

Design/methodology/approach

In this paper, the TLM has been researched and applied to solve nonlinear iteration in FEM. LU decomposition method and the Jacobi preconditioned conjugate gradient method have been investigated to solve the equations in transmission line finite element method (FEM-TLM). The algorithms have been developed in C++ language. The algorithm is applied to analyze the magnetic field of a long straight current-carrying wire and a single-phase transformer.

Findings

FEM-TLM is more effective than traditional FEM in nonlinear iteration. The results of FEM-TLM have been compared and analyzed under different calculation scales. It is found that the LU decomposition method is more suitable for FEM-TLM because there is no need to repeatedly assemble the global coefficient matrix in the iterative solution process and it is not affected by the disturbance of the right-hand vector.

Originality/value

An effective algorithm is provided for solving nonlinear problems in the electromagnetic field, which can save a lot of computing costs. The efficiency of LU decomposition and CG method in FEM-TLM nonlinear iteration is investigated, which also makes a preliminary exploration for the research of FEM-TLM parallel algorithms.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering , vol. 42 no. 1
Type: Research Article
ISSN: 0332-1649

Keywords

Article
Publication date: 24 January 2024

Dexin Chen, Hongyuan He, Zhixin Kang and Wei Li

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Abstract

Purpose

This study aims to review the current one-step electrodeposition of superhydrophobic coatings on metal surfaces.

Design/methodology/approach

One-step electrodeposition is a versatile and simple technology to prepare superhydrophobic coatings on metal surfaces.

Findings

Preparing superhydrophobic coatings by one-step electrodeposition is an efficient method to protect metal surfaces.

Originality/value

Even though there are several technologies, one-step electrodeposition still plays a significant role in producing superhydrophobic coatings.

Details

Anti-Corrosion Methods and Materials, vol. 71 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 16